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Powerful Supervised Learning

Deep Learning + Supervised Learning
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Deep Supervised Learning is powerful ... when task and data permit it.

Challenges: Semi-supervised learning:
Labeled data can be hard to get e
- Labels may require human efforts
- Labels may require special devices :__D_a_tf____?__,___.__.. ~
Unlabeled data are usually abundant :-Unlabeled 000" ’ raining
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Modern Semi-supervised Learning Paradigm

Semi-supervised Learning:
Entropy minimization based methods

Consistency regularization based methods

Hybrid methods
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Modern Semi-supervised Learning Paradigm

Entropy minimization based methods
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Modern Semi-supervised Learning Paradigm

Consistency regularization based methods
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Modern Semi-supervised Learning Paradigm

Hybrid methods
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Drawbacks of Existing Works

1. Rely on the model confidence of pseudo label for unlabeled data.
2. Sensitive to the choice of augmentation.
3. Neglect the underlying temporal structure of time series.

4. Unable to discover more general patterns.



Method — SemiTime

Definition
— Past-Future Temporal Relation
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Method — SemiTime

Overview of the proposed method
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Method — SemiTime

Architecture detail

Supervised Classification Module
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Experiment

Datasets
Table 1. Statistics of Datasets.
Dataset Sample | Length | Class
CricketX 780 300 12
XJTU 1920 1024 15
InsectWingbeatSound 2200 256 11
MFPT 2574 1024 15
UWaveGestureLibraryAll 4478 945 8
EpilepticSeizure 11500 178 5
Baselines Evaluation Metric

I FuIIy supervised baseline
| Pseudo-Label Lee et al. 2013

I T-Model Laine et al. 2017
'MTL Jawed et al. 2020 :

Accuracy
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Results

Table 2. Test classification accuracy (%, averages of 10 runs) for supervised baseline and semi-supervised learning on different datasets.All
methods use the same 4-layer convolutional backbone. Best results are marked in red and the second-best in blue.

Label Ratio 10% 20% 0% | 100% 0% | 20% | 40% | 100% 0% | 20% | 40% 100%
Dataset CricketX XJTU InsectWingbeatSound
Supervised 33622005 | 38.7942.08 | 52642253 | 6298201 | 6071 -1 05 T 833241.50 | 94.03+1.56 | 97.92£0.61 | 0.0~ 132 [ 550510.76 | 61.4120.96 | 66.27+1.30
Pscudo-Label [12] | 38.2752,7% | 44.44£291 | 53.39£2.18 - [AaL1.38% 85195182 | 93.97£2.79 - 456.78% 48355181 | 553242.04 -
TT-Model [13] £9.62% | 48.18+2.07 | 5473+1.04 - 85.93+0.91 | 95.03+1.34 - 56.14£1.32 | 62.20£0.53 -
MTL 50.12+1.22 | 55.10+1.12 | 63.58+1.72 | 7327FT86 | 86.64+1.78 | 94.02+1.65 | 98.15+1.04 | S045ET.0T | 56.43+0.88 | 60.90-£0.87 | 64.14-1.08
Ours 44.88L3.13 | 51.61+0.66 | 58.71+2.78 | 65.66::1.58 | 84.61+1.39 | 93.93+0.49 | 97.79:0.33 | 98.46+0.25 | 54.96+1.61 | 59.01+1.56 | 62.38+0.76 | 66.57+0.67
Dataset MFPT UWaveGestureLibraryAll EpilepticSeizure
Supervised | 50.88:£0.32 | 5714054 | 60.762048 | 81.63+0.15 | 75811084 | 81534051 | 8581£0.66 | 89.5E0.68 | 68.40+0.43 | 70.77£0.70 | 73.49E0.60 | T7.77E1.13
Pseudo-Label [12] | 63.90£2.62 | 63.20= 177 | 69.60+2.27 - 75.72%1.85 | A1.2.05% 1 86.45£1.20 - 68572050 | 12.90LN 12 [ 74.60+0.65 -
T-Model [13]~ | 55414065 | AD 5.49% | 70.15+0.88 - 77.26+0.31 86.1740.91 - 69.60+0.34 | 71,3:23% | 74.54+0.55 -
MTL 56.11+1.25 74.2541.01 | 82.8141.06 | 76.35+0.56 | ST.77E0.94 | 86.01+0.68 | 89.76::0.96 | 68.71+0.94 74774075 | 78.5320.62
Ours 64.16:0.85 | 69.84:0.94) | 76.49+0.54 | 84.33:0.50 | 81.46:-0.60 | 84.57+0.49 | 86.91::0.47 | 90.29+0.32 | 74.86+0.42 | 75.54£0.63 | 77.01+0.79 | 79.26+1.20

At least 2.05% ~ 11.38% Accuracy improvement!




Experiment

Parameter Sensitivity
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SemiTime consistently outperforms the supervised baseline!
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Experiment

Visualization

Epileptic Seizure

O Seizure

© Tumor area
O Healthy area
O Eyes closed
O Eyes open

Supervised SemiTime

Semantic consistency is captured in the learned representations
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Conclusion

Traditional semi-supervised model cannot effectively capture
the underlying temporal structure of time series.

We propose a general semi-supervised time series
classification framework, named SemiTime, by exploring the
semantic feature from unlabeled data in a self-supervised
manner.

We design a simple but effective temporal relational segments
sampling strategy, and based on the sampled relational
segments, the useful semantic feature can be extracted from
the unlabeled time series data
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Contact : isfanhy@hrbust.edu.cn
Code and data : https://haoyfan.github.io/
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