

Semi-supervised Time Series Classification By Temporal Relation Prediction

*Haoyi Fan*¹, Fengbin Zhang¹, Ruidong Wang¹, Xunhua Huang¹, Zuoyong Li²

Harbin University of Science and Technology¹ Minjiang University² isfanhy@hrbust.edu.cn

Background

Healthcare Diagnosis

Finance Forecasting

-2-

Industrial Fault Detection

Astrophysical Analysis

Strodthoff, Nils, et al. "Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL." arXiv preprint arXiv:2004.13701, (2020). Li, Chuan, et al. "Fuzzy determination of informative frequency band for bearing fault detection." Journal of Intelligent & Fuzzy Systems, (2016).

Cheng, Ziqiang, et al. "Time2Graph: Revisiting Time Series Modeling with Dynamic Shapelets." AAAI, (2020).

Mousavi, S. Mostafa, et al. "Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking." Nature communications, (2020).

Koenig, Michael, Rüdiger Staubert, and Jens Timmer. "Analyzing X-ray Variability by State Space Models." Astronomical Time Series, (1997).

Powerful Supervised Learning

Deep Learning + Supervised Learning

https://cv.gluon.ai/build/examples_datasets/imagenet.html

1000 categories: Training: 1 million, Test: 100 k

Deep Supervised Learning is powerful ... when task and data permit it.

Challenges:

Labeled data can be hard to get

- Labels may require human efforts

- Labels may require special devices Unlabeled data are usually abundant

Semi-supervised learning:

-4-

Semi-supervised Learning:

- Entropy minimization based methods
- Consistency regularization based methods
- Hybrid methods

Entropy minimization based methods

[1] Grandvalet, Yves, and Yoshua Bengio. "Semi-supervised learning by entropy minimization." *NIPS*, (2004).
[2] Lee, Dong-Hyun. "Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks." *ICML*, (2013).
[3] Xia Oizha et al. "Self training with poisy student improves imagenet elsesification." *CVPR* (2020).

[3] Xie, Qizhe, et al. "Self-training with noisy student improves imagenet classification." CVPR, (2020).
[4] Pham, Hieu, et al. "Meta pseudo labels." arXiv preprint arXiv:2003.1058, (2020).

-5-

-6-

Consistency regularization based methods

[5] Sajjadi, Mehdi, Mehran Javanmardi, and Tolga Tasdizen. "Regularization with stochastic transformations and perturbations for deep semi-supervised learning." NIPS, (2016).
[6] Laine, Samuli, and Timo Aila. "Temporal ensembling for semi-supervised learning." ICLR (2016).

[7] Tarvainen, Antti, and Harri Valpola. "Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results." NIPS (2017).
[8] Miyato, Takeru, et al. "Virtual adversarial training: a regularization method for supervised and semi-supervised learning." TPAMI (2018).

Hybrid methods

Berthelot, David, et al. "Mixmatch: A holistic approach to semi-supervised learning." *NeurIPS* (2019). Berthelot, David, et al. "Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring." *ICLR*, (2020). Li, Junnan, Richard Socher, and Steven CH Hoi. "Dividemix: Learning with noisy labels as semi-supervised learning." *ICLR*, (2020). Sohn, Kihyuk, et al. "Fixmatch: Simplifying semi-supervised learning with consistency and confidence." *NeurIPS*, (2020).

-7-

- 1. Rely on the model confidence of pseudo label for unlabeled data.
- 2. Sensitive to the choice of augmentation.
- 3. Neglect the underlying temporal structure of time series.
- 4. Unable to discover more general patterns.

Method — SemiTime

-9-

Definition — Past-Future Temporal Relation

Overview of the proposed method

Method — SemiTime

-11-

Architecture detail

Datasets

Table 1. Statistics of Datasets.									
Dataset	Sample	Length	Class						
CricketX	780	300	12						
XJTU	1920	1024	15						
InsectWingbeatSound	2200	256	11						
MFPT	2574	1024	15						
UWaveGestureLibraryAll	4478	945	8						
EpilepticSeizure	11500	178	5						

Table 1. Statistics of Datasets.

Baselines

Fully-supervised baseline Pseudo-Label Lee et al. 2013 π-Model Laine et al. 2017 MTL Jawed et al. 2020

Evaluation Metric

Accuracy

Results

Table 2. Test classification accuracy (%, averages of 10 runs) for supervised baseline and semi-supervised learning on different datasets. All methods use the same 4-layer convolutional backbone. Best results are marked in **red** and the second-best in **blue**.

Label Ratio	10%	20%	40%	100%	10%	20%	40%	100%	10%	20%	40%	100%
Dataset	CricketX				XJTU			InsectWingbeatSound				
Supervised	33.62 ± 0.95	38.79 ± 2.08	52.64 ± 2.53	62.98 ± 2.01	69 71+1 06	83.32 ± 1.59	94.03±1.56	97.92±0.61	50.06 ± 1.58	55.95 ± 0.76	61.41±0.96	66.27±1.30
Pseudo-Label [12]	38.87+2.26	44.44 ± 2.91	53.39 ± 2.18	-	7 4 11.38%	85.19 ± 1.82	93.97±2.79	-	43.0./8%	48.35 ± 1.81	55.32 ± 2.04	-
П-Model [13]	38.9.62%	48.18 ± 2.07	54.73 ± 1.04	-	75.96±0.52	85.93 ± 0.91	95.03±1.34	-	51.47±0.36	56.14 ± 1.32	$62.20{\pm}0.53$	-
MTL [11]	40.94±1.97	50.12±1.22	55.10±1.12	63.58±1.72	73.22 ± 1.86	86.64±1.78	94.02 ± 1.65	98.15±1.04	50.45 ± 1.01	56.43±0.88	60.90 ± 0.87	64.14 ± 1.08
Ours	44.88±3.13	51.61±0.66	58.71±2.78	65.66±1.58	84.61±1.39	93.93±0.49	97.79±0.33	98.46±0.25	54.96±1.61	59.01±1.56	62.38±0.76	66.57±0.67
Dataset	MFPT			UWaveGestureLibraryAll			EpilepticSeizure					
Supervised	50.88 ± 0.32	57.14 ± 0.54	69.76 ± 0.48	81.63±0.15	75.81 ± 0.84	81.53+0.54	85.81±0.66	89.5±0.68	68.40 ± 0.43	70.77 ± 0.70	73.49 ± 0.60	77.77±1.13
Pseudo-Label [12]	63.90±2.62	65.20 ± 1.70	69.60 ± 2.27	-	75.72 ± 1.85	<u></u> 2.05%	86.45±1.20	-	68.57 ± 0.50	72.02 ± 0.48	74.60 ± 0.65	-
II-Model [13]	55.41 ± 0.65	<u>~0</u> 5.49%	70.15 ± 0.88	-	77.26±0.31	82.87±0.64	86.17±0.91	-	69.60±0.34	3.23%	74.54 ± 0.55	-
MTL [11]	56.11 ± 1.25	66.20±1.18	74.25 ± 1.01	82.81±1.06	76.35 ± 0.56	81.77±0.94	86.01±0.68	89.76±0.96	68.71±0.94	73.17±0.81	74.77±0.75	78.53±0.62
Ours	$64.16{\pm}0.85$	69.84±0.94	76.49±0.54	84.33±0.50	81.46±0.60	84.57±0.49	86.91±0.47	90.29±0.32	$74.86{\pm}0.42$	75.54±0.63	77.01±0.79	79.26±1.20

At least 2.05% ~ 11.38% Accuracy improvement!

Parameter Sensitivity

SemiTime consistently outperforms the supervised baseline!

Visualization

Semantic consistency is captured in the learned representations

- Traditional semi-supervised model cannot effectively capture the underlying temporal structure of time series.
- We propose a general semi-supervised time series classification framework, named SemiTime, by exploring the semantic feature from unlabeled data in a self-supervised manner.
- We design a simple but effective temporal relational segments sampling strategy, and based on the sampled relational segments, the useful semantic feature can be extracted from the unlabeled time series data

Q&A

Contact : <u>isfanhy@hrbust.edu.cn</u> **Code and data** : <u>https://haoyfan.github.io/</u>