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SemiTime: Semi-supervised learning on time series

Semi-supervised learning (SSL) aims at
using both labeled and unlabeled data 
during model training to boost the 
performance of model.
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Fig. 3. Impact of different past-future 
segment split ratios on CricketX.

Fig. 4. t-SNE visualization of the learned embedding on 
EpilepticSeizure dataset. Different colors indicate different labels.
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Experimental results

Fig. 1. Schematic illustration of the proposed
temporal relational segment sampling.

Fig. 2. Architecture of SemiTime.
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Notations
𝒕# = (𝑡(#,,), . . . 𝑡(#,.)) : time series
𝒟/: Labeled training set
𝒟0: Unlabeled training set
𝛼: Past-future segment split ratio
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Code and data are publicly available at https://haoyfan.github.io/
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