

AnomalyDAE: Dual Autoencoder for Anomaly Detection on Attributed Networks

Haoyi Fan¹, Fengbin Zhang¹, Zuoyong Li²

Harbin University of Science and Technology¹ Minjiang University² isfanhy@hrbust.edu.cn

Biology Network

Finance Transaction Network

-2-

Anomaly Detection on the Attributed Network

-3-

Different types of anomalies

Structure-inconsistent Attribute-consistent

Structure-consistent Attribute-inconsistent

-4-

Structure-inconsistent Attribute-inconsistent

Different neighbors contribute differently for anomaly detection

Challenges:

- The cross-modality interactions between the network structure and node attribute
- Neighbor-attention aware anomaly measuring

Numerous attributed network based anomaly detection methods have been proposed...

- **Deep** representation learning framework on graph?
- The cross-modality interactions between the network structure and node attribute?

Problem Statement

Problem

Given $\mathcal{G} = \{\mathcal{V}, \mathcal{E}, \mathbf{X}\}$, learn a score function $f: \mathcal{V}_i \mapsto y_i \in \mathbb{R}$, to classify sample x_i based on the threshold λ :

 $y_i = \{ \begin{matrix} 1, & if f(\boldsymbol{\mathcal{V}}_i) \geq \lambda, \\ 0, & otherwise. \end{matrix} \}$

where y_i denotes the label of sample x_i , with 0 being the normal class and 1 the anomalous class.

Notations

- *G* : Attributed network
- v : Set of nodes in network.
- \mathcal{E} : Set of edges in network.
- *M* : Number of nodes.
- *N* : Dimension of attribute.
- $\mathbf{A} \in \mathbb{R}^{M \times M}$: Adjacency matrix
- of a network.
- $\mathbf{X} \in \mathbb{R}^{M \times N}$: Attribute matrix of all nodes.

Attribute Autoencoder

AnomalyDAE

Structure-level and attribute-level anomaly score

Neighbor-attention Mechanism in Structure Autoencoder Initial feature transformation: $\mathbf{Z}^{\boldsymbol{\mathcal{V}}} = \sigma(\mathbf{X}\mathbf{W}^{\boldsymbol{\mathcal{V}}(1)} + \mathbf{b}^{\boldsymbol{\mathcal{V}}(1)})$ X, A **Importance** weights: $e_{i,j} = attn\left(\mathbf{Z}_i^{\boldsymbol{v}}, \mathbf{Z}_j^{\boldsymbol{v}}\right)$ **Feature Transform** $= \sigma(\mathbf{a}^{\mathrm{T}} \cdot [\mathbf{W}^{\boldsymbol{\mathcal{V}}_{(2)}} \mathbf{Z}_{i}^{\boldsymbol{\mathcal{V}}} || \mathbf{W}^{\boldsymbol{\mathcal{V}}_{(2)}} \mathbf{Z}_{i}^{\boldsymbol{\mathcal{V}}}])$ $\tilde{\mathbf{z}}^{\boldsymbol{\nu}}$ **Normalization:** $\gamma_{i,j} = \frac{\exp(e_{i,j})}{\sum_{k \in \mathcal{N}_i} \exp(e_{i,k})}$ **Graph Attention** Neighbor-attention aware feature aggregation: $\mathbf{Z}^{\mathcal{V}}$ $\mathbf{Z}_{i}^{\boldsymbol{\mathcal{V}}} = \sum_{k \in \mathcal{N}_{i}} \gamma_{i,k} \cdot \mathbf{Z}_{k}^{\boldsymbol{\mathcal{V}}}$

Cross-modality Interactions Capturing in Attribute Autoencoder

Loss and Anomaly Score

Loss and Anomaly Score

Experiment

Datasets

Iddie 2. Statistics of the used iteal world databets.						
Database	# \mathcal{V}	# <i>E</i>	$\# \mathcal{A}$	# Anomalies		
BlogCatalog	5,196	171,743	8,189	300		
Flickr	7,575	239,738	12,047	450		
ACM	16,484	71,980	8,337	600		

Table 2. Statistics of the used Real-World datasets.

Baselines

LOF <u>Breunig et al. 2000</u> SCAN <u>Xu et al. 2007</u> AMEN <u>Perozzi et al. 2016</u> Radar <u>Li et al. 2017</u> ANOMALOUS <u>Peng et al. 2018</u> Dominant <u>Ding et al. 2019</u>

Evaluation Metric

AUC (Area Under a receiver operating characteristic **C**urve)

Experiment

Results

Table 3. AUC scores of all methods on three datasets.

Method	BlogCatalog	Flickr	ACM	
LOF [18]	49.15	48.81	47.38]
SCAN [19]	27.27	26.86	35.99	
AMEN [8]	53.37	60.47	72.62	
Radar [12]	71.04	72.86	69.36	
Anomalous [13]		22.32%	/715.11	%
Dominant [14]	78.13	74.9	74.94	
AnomalyDAE	97.81	97.22	90.05	

At least 15.11% ~ 22.32% AUC improvement!

Experiment

Results

(a) Embedding dimension

(b) Parameter α

Robust and Effective!

1

Conclusion

- Traditional machine learning based methods perform poor for feature learning on large graph.
- Traditional deep graph model cannot effectively capture the cross-modality interactions between the network structure and node attribute.
- We propose a deep joint representation learning framework via a dual autoencoder to capture the complex cross-modality interactions between the network structure and node attribute.

Reference

- **[LOF]** Breunig, Markus M., et al. "LOF: identifying density-based local outliers." **KDD. 2000**.
- **[SCAN]** Xu, Xiaowei, et al. "Scan: a structural clustering algorithm for networks." **KDD. 2007**.
- [FocusCO] Perozzi, Bryan, et al. "Focused clustering and outlier detection in large attributed graphs." KDD. 2014.
- **[AMEN]** Perozzi, Bryan, and Leman Akoglu. "Scalable anomaly ranking of attributed neighborhoods." **SIAM, 2016**.
- **[Radar]** Li, Jundong, et al. "Radar: Residual Analysis for Anomaly Detection in Attributed Networks." **IJCAI. 2017**.
- [GAT] Veličković, Petar, et al. "Graph attention networks." ICLR. 2018.
- **[ANOMALOUS]** Peng, Zhen, et al. "ANOMALOUS: A Joint Modeling Approach for Anomaly Detection on Attributed Networks." **IJCAI. 2018**.
- [Dominant] Ding, Kaize, et al. "Deep anomaly detection on attributed networks." SIAM, 2019.

Thanks for listening!

Contact: <u>isfanhy@hrbust.edu.cn</u> Home Page: <u>https://haoyfan.github.io/</u>