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ABSTRACT
Semi-supervised learning (SSL) has proven to be a powerful algo-
rithm in different domains by leveraging unlabeled data to mitigate
the reliance on the tremendous annotated data. However, few efforts
consider the underlying temporal relation structure of unlabeled time
series data in the semi-supervised learning paradigm. In this work,
we propose a simple and effective method of Semi-supervised Time
series classification architecture (termed as SemiTime) by gaining
from the structure of unlabeled data in a self-supervised manner.
Specifically, for the labeled time series, SemiTime conducts the su-
pervised classification directly under the supervision of the anno-
tated class label. For the unlabeled time series, the segments of past-
future pair are sampled from time series, where two segments of
pair from the same time series candidate are in positive temporal re-
lation, while two segments from the different candidates are in neg-
ative temporal relation. Then, the temporal relation between those
segments is predicted by SemiTime in a self-supervised manner. Fi-
nally, by jointly classifying labeled data and predicting the tempo-
ral relation of unlabeled data, the useful representation of unlabeled
time series can be captured by SemiTime. Extensive experiments on
multiple real-world datasets show that SemiTime consistently out-
performs the state-of-the-arts, which demonstrates the effectiveness
of the proposed method. Code and data are publicly available at
https://haoyfan.github.io.

Index Terms— Time series classification, semi-supervised
learning, self-supervised, temporal relation.

1. INTRODUCTION

Time series classification as a fundamental task in machine
learning and signal processing, has gained significant attention over
past decades with many applications such as intelligent fault diagno-
sis for electric machine [1], ECG analysis for human healthcare [2],
and cyber-security for power systems [3].

Deep supervised learning models have achieved remarkable
performance on different time series analysis tasks [4–6]. How-
ever, those supervised deep models rely on the availability of large
amounts of labeled training data, where labeling time series data
is often labor-intensive and time-consuming. Thus, there is a large
research effort dedicated to learn with not only limited labeled data
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Fig. 1. Schematic illustration of the proposed semi-supervised tech-
niques: Both labeled and unlabeled data are utilized in a semi-
supervised paradigm, where labeled data is classified with supervi-
sion, and unlabeled data is trained by self-supervised temporal rela-
tion prediction of past-future segment pair.

but abundant easily accessible unlabeled data from many realistic
settings. Within this effort, interest in semi-supervised time se-
ries representation learning has recently increased, which shows
promising results on time series classification [7–11].

Semi-supervised time series classification aims to combine a
small amount of labeled data with a large amount of unlabeled data
during training to boost the final classification performance. In [7,
8], Euclidean Distance (ED) and Dynamic Time Warping Distance
(DTW-D) based one-nearest-neighbor classifiers are used respec-
tively, to make predictions based on the similarities between labeled
and unlabeled time series. Different from those time domain based
similarity measure using ED and DTW-D, in [9], the Maximum Di-
agonal Line of the Cross-Recurrence Quantification Analysis (MDL-
CRQA) is applied on the time series phase space for semi-supervised
time series classification. Moreover, in [10], both labeled and unla-
beled time series data are engaged by employing the least squares
regression, the power of the pseudo-labels, shapelet regularization,
and spectral analysis of time series. More recently, multi-task learn-
ing is introduced in [11] by classifying labeled samples and fore-
casting future series values of unlabeled samples jointly. Despite the
existing methods achieve encouraging results, they ignored the un-
derlying temporal relation structure of time series data, which makes
the utilization of unlabeled data under-explored.

In this paper, we argue that the underlying temporal relation of
time series data is a significant supervision signal, which can be uti-
lized in the semi-supervised learning to supervise the learning of
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unlabeled time series data. Consequently, we propose a general
semi-supervised time series classification framework, by exploring
the semantic feature from unlabeled data in a self-supervised man-
ner. As shown in Figure 1, for the labeled time series, SemiTime
conducts supervised classification directly under the supervision of
the annotated class label. For the unlabeled time series candidates,
past segment and future segment are sampled from each time se-
ries to construct past-future segment pairs, where two segments of
pair from the same candidate are in positive temporal relation while
two segments from the different candidates are in negative temporal
relation. Then, the temporal relation between those segments is pre-
dicted by SemiTime in a self-supervised manner. Finally, by jointly
classifying labeled data and predicting the temporal relation of un-
labeled data, more discriminative feature and useful representation
of unlabeled time series can be captured by SemiTime. We conduct
extensive experiments on multiple real-world datasets from diverse
data sources, experimental results show that SemiTime consistently
outperforms the state-of-the-arts, which demonstrates the effective-
ness of the proposed method.

In sum, the main contributions of this paper are as follows:

• We propose a general semi-supervised time series classifica-
tion framework, by exploring the semantic feature from unla-
beled data in a self-supervised manner.

• We design a simple but effective temporal relational segments
sampling strategy, and based on the sampled relational seg-
ments, the useful semantic feature can be extracted from the
unlabeled time series data.

• We comprehensively evaluate the effectiveness of SemiTime
on multiple real-world datasets, and the results demonstrate
that our proposed method outperforms the state-of-the-arts.

2. RELATED WORK

Semi-supervised Time Series Classification. In the last
decades, semi-supervised learning has attracted lots of attention
in different domains seeking to learn from both unlabeled and la-
beled data [12, 13]. Recently, different semi-supervised time series
classification methods have been proposed by learning the under-
lying structure of the unlabeled time series. Distance based one-
nearest-neighbor classifier [7, 8] are used to make predictions, those
methods use euclidean distance or dynamic time warping distance to
measure the similarities between labeled and unlabeled time series.
Maximum Diagonal Line of the Cross-Recurrence Quantification
Analysis (MDL-CRQA) is applied to time series phase space in [9]
for semi-supervised time series classification. In [10], both labeled
and unlabeled time series data are engaged by employing the least
squares regression, the power of the pseudo-labels, shapelet regu-
larization, and spectral analysis of time series. In [11], a multi-task
learning framework is introduced by classifying labeled samples
and forecasting the unlabeled samples jointly for semi-supervised
learning.

Self-supervised Learning. Self-supervised learning aims to ex-
tract the underlying useful representation of unlabeled data by de-
signing effective pretext tasks. Recently, self-supervised techniques
have a broad range of applications in different domains such as com-
puter vision [14–18], and audio/speech processing [19–22]. For vi-
sual data, various pretext tasks are designed including solving jigsaw
puzzles [14], rotation prediction [15] and visual contrastive learn-
ing [16] for image, and frame order validation [17] and pace predic-
tion [18] for video. For audio/speech data, different self-supervised
techniques include contrastive learning on audio/speech data [19,
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Fig. 2. Architecture of SemiTime.

20], and multi-task learning from raw audio by predicting a num-
ber of handcrafted features such as MFCCs, prosody, and wave-
form [21, 22].

3. METHOD

In this section, we present our proposed SemiTime in detail.
As shown in Figure 2, SemiTime consists of three modules includ-
ing temporal relational segment sampling module, supervised clas-
sification module, and self-supervised temporal relation prediction
module. The input of SemiTime is a training set of labeled input-
target pairs (ti, yi) ∈ DL and unlabeled inputs ti ∈ DU , where
DU = {ti|ti = (t(i,1), ...t(i,T ))}Ni=1 is a set of T -length time se-
ries, and DL is subset of DU . In the supervised classification mod-
ule, the labeled data DL are fed to a backbone encoder fθ following
a classification head hµ for supervised classification task. For un-
labeled data DU , their temporal segments are sampled from tem-
poral relational segment sampling module, and then feed to self-
supervised temporal relation prediction module, which consists of
a shared backbone encoder fθ for feature extraction, and a relation
head hϕ for segment relation prediction task.

3.1. Training on labeled data

Given the labeled input-target pairs (ti, yi) ∈ DL, a backbone
encoder fθ takes the time series as input to extract the feature em-
bedding zi = fθ(ti), and then the following classification head hµ
makes the final classification output pi = hµ(zi). The supervised
training loss is defined as a cross-entropy loss:

Lcls = − 1

|DL|

|DL|∑
i=1

yi · log(pi) (1)

3.2. Training on unlabeled data

To explore unlabeled data during feature learning, we use self-
generated temporal segment relation as supervisory signal and con-
duct temporal relation prediction task on unlabeled time series. For-
mally, given unlabeled inputs ti ∈ DU , each time series ti is split
into two parts where the front B-length part of ti denotes past seg-
ment si,α and the rear (T − B)-length part denotes future segment
s+
i,α, where B = bα ∗ T c and α is a past-future segment split ra-

tio. To sample temporal relation among those segments, given an
anchor segment si,α, we select its future counterpart s+

i,α from the
same time series ti as its positive sample, and select another future
segment s−j,α from a different time series tj as its negative sam-
ple. Based on the sampled temporal segment relation, the shared
backbone encoder fθ takes the sampled anchor segment si,α, pos-
itive segment s+

i,α and negative segment s−i,α as inputs, to extract



the feature embedding zi,α = fθ(si,α), z+
i,α = fθ(s

+
i,α), z−j,α =

fθ(s
−
i,α), and then the relation head hϕ conducts temporal relation

prediction between segments, where p2i−1 = hϕ([zi,α,z
+
i,α]) for

positive relation prediction, and p2i = hϕ([zi,α,z
−
i,α]) for nega-

tive relation prediction. Here, [•, •] is concatenation operation. The
self-supervised relation prediction training loss is defined as a binary
cross-entropy loss:

Lrel = − 1

2|DU |

2|DU |∑
i=1

ỹi · log(pi) + (1− ỹi) · (1− log(pi)) (2)

where ỹi = 1 denotes positive relation and ỹi = 0 negative relation.
The mini-batch training algorithm of SemiTime is provided in

Algorithm 1.

Algorithm 1 SemiTime Mini-batch Training.
Require:

Labeled input pair (ti, yi) ∈ DL, and unlabeled input ti ∈ DU .
Encoder backbone fθ; Classification head hµ; Relation head hϕ;
Learning rate η.

1: for each epoch do
2: for each labeled minibatch BL do
3: zi = fθ(ti∈BL) . Embedding of labeled inputs.
4: pi = hµ(zi∈BL) . Label classification.
5: Lcls = − 1

|BL|
∑|BL|
i=1 yi · log(pi) . Cross-entropy loss.

6: θ = θ − η∇θLcls, µ = µ− η∇µLcls . Update models.
7: end for
8: for each unlabeled minibatch BU do
9: zi,α = fθ(si∈BU ,α) . Embedding of anchor segments.

10: z+
i,α = fθ(s

+
i∈BU ,α

) . Embedding of positive segments.
11: z−j,α = fθ(s

−
j∈BU ,α

) . Embedding of negative segments.
12: p2i−1 = hϕ([zi,α,z

+
i,α]) . Positive relation prediction.

13: p2i = hϕ([zi,α,z
−
i,α]) . Negative relation prediction.

14: Lrel = − 1
2|BU |

∑2|BU |
i=1 ỹi · log(pi)+(1− ỹi) ·(1− log(pi))

. Binary Cross-entropy loss.
15: θ = θ − η∇θLrel, ϕ = ϕ− η∇ϕLrel . Update models.
16: end for
17: end for
18: return Encoder backbone fθ and classification head hµ

4. EXPERIMENTS

In this section, we will describe the experimental setups and then
analyze the experimental results.

4.1. Experimental Setup

Datasets. To evaluate the effectiveness of the proposed method,
in the experiment, we use different categories of time series includ-
ing three public datasets CricketX, UWaveGestureLibraryAll, and
InsectWingbeatSound from the UCR Time Series Archive1, along
with two real-world bearing datasets XJTU2 and MFPT3 [23], and

1https://www.cs.ucr.edu/˜eamonn/time_series_
data_2018/

2https://biaowang.tech/xjtu-sy-bearing-datasets/
3https://www.mfpt.org/fault-data-sets/

Table 1. Statistics of Datasets.
Dataset Sample Length Class
CricketX 780 300 12

XJTU 1920 1024 15
InsectWingbeatSound 2200 256 11

MFPT 2574 1024 15
UWaveGestureLibraryAll 4478 945 8

EpilepticSeizure 11500 178 5

a EEG dataset EpilepticSeizure4 [24]. All six datasets consist of var-
ious numbers of instances, signal lengths, and number of classes. In
the experiment, we set train-validation-test split as 60%-20%-20%.
The statistics of six datasets are shown in Table 1.

Baselines. We compare SemiTime against several state-of-the-
art semi-supervised baselines: (1) Supervised: a fully supervised
baseline using the same encoder backbone and linear classifier as
SemiTime, which is trained only on labeled data. (2) Pseudo-Label
[12]: is an SSL method that uses the pseudo label generated from
unlabeled data to enlarge training set for supervised training. (3) Π-
Model [13]: is an SSL model that uses self-ensembling to form a
consensus prediction of the unknown labels under different regular-
ization and input augmentation conditions. (4) MTL [11] is an SSL
model that leverages features learned from the self-supervised time
series forecasting task on unlabeled data.

Implementation. All experiments were performed using Py-
Torch (v1.4.0). A simple 4-layer 1D convolutional neural network
with ReLU activation and batch normalization was used as the back-
bone encoder fθ for SemiTime and all other baselines, and use a lin-
ear layer as classification head hµ and a two-layer fully-connected
networks with 256 hidden neurons as relation head hϕ respectively.
Adam optimizer was used with a learning rate of 0.01. We train all
models 1000 epochs with an early-stopping callback of 200 patience
epochs to monitor the validation metric and stop the training when
no improvement is observed. The batch size is set as 128. During
training, we use data augmentations (magnitude warping and time
warping [25]) for all models. Classification accuracy is used as the
evaluation metric.

4.2. Ablation Study

Firstly, we evaluate the effectiveness of the proposed temporal
relation prediction module by investigating the impact of different
past-future segment split ratios α on time series classification. As
shown in Figure 3, where blue bar indicates temporal relation pre-
diction accuracy on training data (Rel. Pred. ACC), and brown line
indicates classification accuracy on test data (Class. ACC). With the
increase of α, Class. ACC keeps increasing until α = 0.4, and we
find that small split ratio values (α < 0.2) or big split ratio val-
ues (α > 0.7) will drop the classification performance. One pos-
sible reason behind this is that an imbalanced past-future segment
split makes the relation prediction task too difficult for the model to
learn useful representation on unlabeled data, and therefore results
in worse Rel. Pred. ACC. Overall, by taking the temporal rela-
tion prediction as pretext task, SemiTime consistently outperforms
the supervised baseline, which demonstrates the effectiveness of the
proposed temporal relation prediction module.

4https://archive.ics.uci.edu/ml/datasets/
Epileptic+Seizure+Recognition

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://biaowang.tech/xjtu-sy-bearing-datasets/
https://www.mfpt.org/fault-data-sets/
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition


Table 2. Test classification accuracy (%, averages of 10 runs) for supervised baseline and semi-supervised learning on different datasets.All
methods use the same 4-layer convolutional backbone. Best results are marked in red and the second-best in blue.

Label Ratio 10% 20% 40% 100% 10% 20% 40% 100% 10% 20% 40% 100%
Dataset CricketX XJTU InsectWingbeatSound

Supervised 33.62±0.95 38.79±2.08 52.64±2.53 62.98±2.01 69.71±1.96 83.32±1.59 94.03±1.56 97.92±0.61 50.96±1.58 55.95±0.76 61.41±0.96 66.27±1.30
Pseudo-Label [12] 38.87±2.26 44.44±2.91 53.39±2.18 - 74.88±2.78 85.19±1.82 93.97±2.79 - 43.16±3.20 48.35±1.81 55.32±2.04 -

Π-Model [13] 38.61±2.29 48.18±2.07 54.73±1.04 - 75.96±0.52 85.93±0.91 95.03±1.34 - 51.47±0.36 56.14±1.32 62.20±0.53 -
MTL [11] 40.94±1.97 50.12±1.22 55.10±1.12 63.58±1.72 73.22±1.86 86.64±1.78 94.02±1.65 98.15±1.04 50.45±1.01 56.43±0.88 60.90±0.87 64.14±1.08

Ours 44.88±3.13 51.61±0.66 58.71±2.78 65.66±1.58 84.61±1.39 93.93±0.49 97.79±0.33 98.46±0.25 54.96±1.61 59.01±1.56 62.38±0.76 66.57±0.67
Dataset MFPT UWaveGestureLibraryAll EpilepticSeizure

Supervised 50.88±0.32 57.14±0.54 69.76±0.48 81.63±0.15 75.81±0.84 81.53±0.54 85.81±0.66 89.5±0.68 68.40±0.43 70.77±0.70 73.49±0.60 77.77±1.13
Pseudo-Label [12] 63.90±2.62 65.39±1.70 69.60±2.27 - 75.72±1.85 81.66±0.74 86.45±1.20 - 68.57±0.50 72.92±0.48 74.60±0.65 -

Π-Model [13] 55.41±0.65 59.68±0.43 70.15±0.88 - 77.26±0.31 82.87±0.64 86.17±0.91 - 69.60±0.34 71.58±0.64 74.54±0.55 -
MTL [11] 56.11±1.25 66.20±1.18 74.25±1.01 82.81±1.06 76.35±0.56 81.77±0.94 86.01±0.68 89.76±0.96 68.71±0.94 73.17±0.81 74.77±0.75 78.53±0.62

Ours 64.16±0.85 69.84±0.94 76.49±0.54 84.33±0.50 81.46±0.60 84.57±0.49 86.91±0.47 90.29±0.32 74.86±0.42 75.54±0.63 77.01±0.79 79.26±1.20
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Fig. 3. Impact of different past-future segment split ratios α on
CricketX dataset (10% labeled data).

4.3. Time Series Classification

In this section, we evaluate the proposed method by comparing
with other semi-supervised state-of-the-arts on time series classifi-
cation task. Following previous studies [11, 13], we randomly se-
lect partial samples (10%, 20%, 40%, and 100%) from the training
set as labeled data and use the whole training set as unlabeled data
for model training. As shown in Table 2, our proposed SemiTime
consistently outperforms all the best baselines across all datasets.
For example, given 10% labeled data, SemiTime improves the ac-
curacy over MTL by 9.62% on CricketX, over Π-Model by 11.38%
on XJTU and 6.78% on InsectWingbeatSound, respectively. Given
20% labeled data, SemiTime improves the accuracy over MTL by
5.49% on MFPT and over Π-Model by 7.55% on EpilepticSeizure.
The results demonstrate that by only generating pseudo-label or us-
ing self-ensembling to predict unlabeled data cannot effectively cap-
ture the underlying temporal structure of time series, which is im-
portant for semi-supervised representation learning of time series
data. Moreover, we also evaluate the performance of SemiTime
by using 100% training data as both labeled and unlabeled data for
supervised and self-supervised training, experimental results show
that SemiTime consistently outperforms Supervised baseline and an-
other self-supervised learning based MTL, which demonstrates that
forecasting pretext task of MTL cannot effectively capture the use-
ful structure of unlabeled time series, while our designed temporal
segment relation prediction is able to capture the underlying intra-
temporal relation of unlabeled time series.

4.4. Visualization

To qualitatively evaluate the learned representations, we use
the trained backbone to extract the feature embedding and visu-
alize them in 2D space using t-SNE [26] to verify the semantic
consistency of the learned representations. Figure 4 shows the vi-

Supervised SemiTime

Eyes open
Eyes closed

Seizure
Tumor area 
Healthy area 

Fig. 4. t-SNE visualization of the learned embedding on Epileptic-
Seizure dataset. Different colors indicate different labels.

sualization results of embedding from the supervised baselines and
the proposed SemiTime on EpilepticSeizure dataset. It is obvious
that by capturing temporal relation structure and gaining the useful
representation from unlabeled data, SemiTime learns more semantic
representations and results in better clustering ability for time series
data, where more semantic consistency is preserved in the learned
representations by our proposed method. Interestingly, we also find
that the EEG records from the tumor brain area and the healthy
brain area are hard to be discriminated by both models, although
SemiTime does better, and this finding provides more insight about
data checking and model refinement.

5. CONCLUSION

We propose a general semi-supervised time series classification
framework, by exploring the semantic feature from unlabeled data in
a self-supervised manner. We design a simple but effective temporal
relation sampling strategy, and based on the sampled temporal rela-
tion, the useful semantic feature can be extracted from the unlabeled
time series data. Our main finding is that the supervisory signal of
self-generated temporal segment relation facilitates the better repre-
sentation of unlabeled time series, and this finding motivates further
thinking of how to design better self-supervised pretext task to as-
sist semi-supervised time series classification. Our experiments on
multiple real-world datasets show that our proposed method con-
sistently outperforms the state-of-the-arts of semi-supervised mod-
els. In the future, we aim to design more effective temporal rela-
tion sampling strategy and conduct semi-supervised representation
learning on multivariate time series by considering inter-variable re-
lationships.
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