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ABSTRACT

In this paper, we propose a novel entropy minimization based semi-
supervised method for semantic segmentation. Entropy minimiza-
tion has proven to be an effective semi-supervised method for real-
izing the cluster assumption, where the decision boundary should lie
in low-density regions. Inspired by the existing consistency train-
ing semi-supervised segmentation networks with encoder-decoder
architecture, we found that there tend to be more large gradient val-
ues at the object edges than other positions in the feature map of
the encoder, and therefore propose a feature gradient map regular-
ization to enlarge inter-class distance in the feature space for low-
entropy of segmentation prediction. Additionally, we introduce an
adaptive sharpening scheme with aleatoric uncertainty, and a class
consistency constraint regularization, to alleviate the interference of
noise with pseudo labels. Extensive experiments on PASCAL VOC,
PASCAL-Context, and Leukocyte datasets show that the proposed
method achieves state-of-the-art semi-supervised semantic segmen-
tation performance without almost additional calculations and net-
work structures.

Index Terms— Semi-supervised learning, Semantic segmenta-
tion, Entropy minimization

1. INTRODUCTION

In recent years, with the development of deep supervised learning,
various computer vision tasks have made significant progress and
made impressive results. However, training a deep neural network
requires a large amount of labeled data which acquisition is often
time-consuming and expensive. Especially in semantic segmenta-
tion tasks, which require a large number of pixel-level labels, and
labeling cost is 15 times and 60 times larger than that of region-level
and image-level labels, respectively [1]. The cost of medical image
segmentation is even more evident due to the need of professional
annotations. Therefore, a growing attention is focused on weakly-
supervised methods [2, 3] and semi-supervised methods [4, 5, 6, 7] .

In this work, we focus mainly on semi-supervised semantic seg-
mentation which assumes that there is a large amount of unlabeled
data and limited labeled data within the same distribution. The cur-
rent dominant semi-supervised segmentation methods can be divided
into Generative Adversarial Networks (GANs) based [4, 5] and con-
sistency training based [6, 7, 8, 9] . The methods based on GANs

*Corresponding authors: Shouying Lin, Zuoyong Li.

extend the generic GAN framework to pixel-level predictions to try
to make fake unlabeled data fool the discriminator. The consistency
training methods expect the output of the network to be smooth un-
der different perturbations. These methods have shown effectiveness
in semi-supervised semantic segmentation. Nevertheless, these ap-
proaches suffer from some limitations. The methods based on adver-
sarial training exploit the unlabeled data, but require careful design
of additional network structures and can be hard to train. The meth-
ods of consistency training require additional calculations for mul-
tiple forward of every perturbation, and disturbances implicitly en-
hance data, which can be unfair to a fully-supervised network with-
out data augmentation.

To address these limitations, we proposed a simple entropy min-
imization based method for semi-supervised semantic segmentation.
With almost no additional network structure and calculations, we
explore a series of regularizations to make the decision boundary
in a low-density region. We visualized the gradient values of en-
coder feature maps to analyze the consistency training method [&],
observed that gradient information at the edges will be larger than
the baseline i.e. fully supervised network. Therefore, one possi-
ble reason for the effectiveness of consistency training methods is
that it can increase the ability of discriminating the edges in high-
dimensional space, which means it can enlarge the inter-class dis-
tance. We further observed that the gradient of low layers and high
layers have local edges consistency, hence we propose feature gra-
dient map regularization (FGMR) which uses gradient maps of low
encoder layers to compensate the encoding ability of deep encoder
layers. Meanwhile, inspired by Kendall et al. [10], the outputs of
segmentation network are changed to mean and variance to obtain
aleatoric uncertainty, which can measure noise of samples. Then,
aleatoric uncertainty is used to generate pseudo labels for unlabeled
data by the proposed adaptive sharpening. To further decrease the
interference of noisy pseudo labels, we constrain the consistency of
low-confidence predictions between segmentation and classification,
in which two predictions are in the same network. Additionally, clas-
sification can refine the segmentation during inference.

The proposed method is simple, efficient and flexible. With
extensive experiments, which demonstrate the effectiveness of our
approach on leukocyte segmentation dataset and a range of popu-
lar semantic segmentation datasets: PASCAL VOC 2012 [11] and
PASCAL-Context [12]. We obtain competitive results with almost
no additional calculations and careful network design.

Specifically, our contributions are as follows:
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Fig. 1: Illustration of proposed approach. For one training iteration, sampling a batch of labeled data ( z;, ys, y. ) together with a
batch of unlabeled images x,,. All samples are passed through a segmentation network to obtain classification predictions and segmentation
predictions. Supervised loss term L is calculated for labeled data, and LY, L{, and L, loss terms are calculated for unlabeled data.

* We first observe that consistency training essentially en-
hances the ability of discriminating image edges, and propose
a feature gradient map regularization (FGMR) that uses gradi-
ent maps of low layers in the encoder to enhance the encoding
ability of deep layers in the encoder.

* We propose an adaptive sharpening scheme, which keeps the
decision boundary of unlabeled data in a low-density region.

* We propose a low-confidence prediction consistency regular-
ization for low-level and high-level semantic information.

* Extensive experiments validate the superiority of the pro-
posed method over the state-of-the-art methods.

2. RELATED WORK

2.1. Semi-Supervised Learning

Recently, people have made many efforts in semi-supervised field
to overcome the shortcomings, such as consistency training meth-
ods [0, 7, 8, 13], graph based methods [14], and entropy minimiza-
tion methods [15, 16, 17, 18]. In this paper, we focus mainly on en-
tropy minimization methods. Minimize entropy, which is based on a
rule: the decision boundary should not cross high-density region of
marginal distribution. The specific method is to force the classifier
to make low-entropy predictions on unlabeled data. For example,
Grandvalet et al. [15] proposed a loss term which minimized the en-
tropy of Pmoder (y|x; ) for unlabeled data explicitly. Lee [17] does
entropy minimization implicitly by constructing pseudo labels which
are regard as training targets in a standard cross-entropy loss.

Similarly, the proposed method enforces an entropy minimiza-
tion of predictions so that the decision boundary located in a low-
density region.

2.2. Semi-Supervised Semantic Segmentation

A large number of the approaches based on consistency training
achieved significant results on semi-supervised semantic segmenta-
tion tasks. Gerda et al. [7] propose an approach that learns consis-
tency under transformations on both labeled and unlabeled data, in

addition to supervised learning from labeled data. Chen et al. [8] in-
troduced an auxiliary network to restrict the consistency of the re-
construction between labeled data and unlabeled data.

The Generative Adversarial Networks plays a vital role in com-
puter vision and image processing, especially in semi-supervised
semantic segmentation. Souly et al. [4] use the GAN to generate
additional images to enhance the features learned by the segmenta-
tion network, and additional class-conditional images are extended
to their semi-supervised method. Hung et al. [5] use an FCN-based
discriminator which yields a dense probabilistic map for each pixel,
which provides additional supervision signal make it can discover
the trust-worthy regions. Different from the previous work, Mittal
et al. [6] fused the original image and segmentation mask as the in-
put of discriminator, and used feature matching loss [19] to improve
semi-supervised semantic segmentation.

However, the consistency training methods need to perform for-
ward pass two or more times or additional auxiliary network for
computing the consistency loss. The GANs based methods are diffi-
cult to train and required careful design of the discriminator. These
methods all require additional calculations or extra network struc-
ture, which increases training costs. In comparison, the proposed
method exploits the unlabeled examples by enforcing an entropy
minimization. We introduce a series of regularizations to semi-
supervised semantic segmentation field, and show that the proposed
method outperforms previous semi-supervised semantic segmenta-
tion methods with least additional costs.

3. METHOD

In this section, we first introduce the method overview of the pro-
posed semi-supervised semantic segmentation approach. Then, we
describe the details of the components in framework.

3.1. Method Overview

Fig. 1 shows an overview of the proposed method which can apply
to any segmentation network. It only needs to make general mi-
nor changes to the existing segmentation network without careful



design. Suppose the input image size is H x W, and the num-
ber of classes is C'. The specific steps are to change the outputs
to the mean s € RE*W*Y and variance 02 € R¥XWXC of the
segmentation results. Similarly, output the mean . € R and vari-
ance 02 € R of the classification results in the last layer of encoder.
In addition to the above-mentioned minor changes to the network,
the other steps of this method are reflected in loss functions, which
can be divided into supervised loss and unsupervised loss functions:

L=L;+ ML, (D

where L; is the supervised loss, L, is the unsupervised loss, and A is
a hyperparameter that adjusts the balance between supervised loss
and unsupervised loss.

For labeled data z; € R "3 and the corresponding segmen-
tation label y, € R¥*W*C and classification label y. € R , z; is
sent to the network to obtain < ps, 02 > and < pc, o2 >. Then,
similar to previous work [20], sampling a data €, \ €. from A/ (0, I),
and convert it to z; = €5 X s + ps \ Ze = € X 0c + e so that
obtaining a sample in (115, 02) \ N (tic, o2 ). The most commonly
used cross-entropy loss is used to supervise both the segmentation
results z, and the classification results z. by ys and y., respectively.
The supervised loss can be described as:

= 30 O £ I HOE ) 2

H,W,C

where H (-, -) is cross-entropy loss function, and «(-) is the activa-
tion function of last layer.

For unlabeled data x,,, we utilize feature gradient map regular-
ization (FGMR) to enhance the edge gradient values of feature maps
in encoder. Then we use variance as aleatoric uncertainty to search
noise samples, which are used to guide adaptive sharpening to obtain
pseudo-labels of unlabeled data, in which pseudo-labels which may
bring noise are used to supervise unlabeled data. Even aleatoric un-
certainty can filter some noise, most of the time the generated noise
of pseudo-labels is more than the suppressed noise. To solve this
problem, low-confidence categories in the classification results are
further used to suppress the segmentation prediction of the corre-
sponding categories to keep classes consistency. The adaptive sharp-
ening loss and the class consistency loss will fight against each other
to make the decision boundary in a low-density region to get the ro-
bust prediction result. The unsupervised loss function can be written
as follows:

Ly =1Lj+ Ly + L, 3)

where LY, L;, and L, are the loss terms of FGMR, adaptive sharp-
ening, and class consistency, respectively. The details of them will
be introduced in Section 3.2, Section 3.3, and Section 3.4.

3.2. Feature Gradient Map Regularization

As shown in Fig. 2, the gradient statistics of different encoder layers
describe that the ability of encoder to extract the edge information
from the low layers to the high layers is gradually enhanced, and
the average gradients of different encoder layers are significantly en-
hanced after the consistency training [8]. These results show that a
great segmentation network expects to find out more edge informa-
tion to improve segmentation predictions. Inspire of these observa-
tions, the key goal of semantic segmentation is how to improve the
ability of encoder to discriminate the edges of objects. As shown in
Fig. 2 (b) and Fig. 2 (c), the gradient information of edges in deep en-
coder is significantly enhanced after consistency training [8], which
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Fig. 2: Statistics and observations of the gradient of U-net [21] en-
coder layers on Leukocyte test dataset. (a) is the average gradient
statistics of the encoder of Chen et al. [8] and baseline (U-net) [21].
(b) and (c) are the gradient maps of baseline(U-net) [21] and Chen
et al. [8] on the fourth layers of encoder, respectively.

confirmed that the reason for the effectiveness of consistency train-
ing methods is that makes the encoder more discriminative. There-
fore, integrating the progressive character of the gradient informa-
tion of different encoder layers, and the goal of improving discrim-
inative ability, the design of the gradient feature map regularization
as follows:
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Where V(+) is a gradient operator and S. denotes the encoder of the
segmentation network. Y 7_ Ve; is set to detach without backprop-
agation during training phase.

3.3. Adaptive Sharpening

The sharpening strategy proposed in Mixmatch [16] was applied to
reduce the entropy of label distribution, which uses the common
approach of adjusting the “temperature” of the categorical distribu-
tion [22]. The sharpening function is defined as follows:

pl/ Zp] ©)

where T' is a hyperparameter. As 7' — 0 , the output
of Sharpen(p,T) will approach a Dirac (“one-hot”) distribution.
Since the results of Sharpen as the targets for the unlabeled data,
lowering temperature encourages model to produce lower-entropy
predictions. However, the setting of 7" needs to be carefully designed
and it is unreasonable to assign the same 7" to all samples.
Therefore, we propose adaptive sharpening to use the variance
predicted by model as the aleatoric uncertainty to filter noise sam-
ples, and adaptively adjust 7" for each sample according to the con-
fidence of the prediction, in which the lower confidence make the
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greater sharpening of the sample:
Al / 2
Di =Dpi +0; (6)

Ti _ P — min(p’) %)

maz () — min(p')

where p; = max(softmaz(u;)). Eq. 7 and Eq. 5 can adaptively
yield a pseudo-label for each sample, and then use MSE loss to op-
timize the unlabeled data:

L =

2|~

N
(p; — Sharpen(p;, T;))? (8)
=0
The proposed adaptive sharpening makes model pay more atten-
tion to non-noise and hard unlabeled data, and less attention to noise
and easy unlabeled data.

3.4. Class Consistency

Due to the strong sharpening for hard samples, it is likely to intro-
duce additional noise to the network, additional noise smoothing
strategy is required. Different from previous work [6], we expect
classification and segmentation to be consistent on low-confidence
predictions instead of high-confidence predictions. High-confidence
classification results are likely to mislead the segmentation results
due to the imbalance of the samples and the limited number of sam-
ples. But the network can always easily predict the correct categories
with very low confidence. The loss function can be expressed as:

e 1
L= pr<pl 2o

p§E(Pe<B)

Pi X p; )

where p¢ = softmax(u.), p° = softmax(us), and 3 is a thresh-
old that determines the boundary of low-confidence consistency. In
this paper, 8 issetto1/C.

4. EXPERIMENTS

4.1. Datasets and Evaluation Metrics

PASCAL VOC [11], PASCAL-Context [12], and a Leukocyte
dataset are used in this work to evaluate the performance of the pro-
posed method. The PASCAL VOC dataset consisting of 21 classes
(with background included). Following the common practice [5, 6],
we augment the training dataset with additional images from [24].
The augmented dataset consists of a total of 10582 training im-
ages and 1449 validation images. The PASCAL-Context dataset is
a whole scene parsing dataset containing 4998 training and 5105
testing images with dense semantic labels. Following the previous
work [6], we used semantic labels for 60 most frequent classes in-
cluding the background class. The Leukocyte dataset which contains
3 classes was collected from a regular hospital. There are 500 im-
ages with the size 256x256 for training and 500 images within the
same size for testing.

The mloU, i.e. mean of class-wise intersection over union,
is adopted as the metric to evaluate PASCAL VOC and PASCA-
Context. And f1 score, recall, precision, and accuracy as evaluation
metrics for Leukocyte dataset.

Table 1: Ablation study of the contribution for each loss term on the
PASCAL VOC dataset with 1/8 labeled data.

Labeled Data
Loss Terms 1/8
CE only 62.0
CE + Sharpen 63.3
CE + adaptively sharpen (AS) 63.9
CE + class consistency (CC) 63.2
CE + AS + CC 65.5
CE + FGMR + AS + CC 66.0

Table 2: Comparison with the-state-of-the-art on PASCAL VOC
dataset and PASCAL-Context dataset.

PASCAL VOC
Labeled Data
Methods 1/20 1/8 1/3 Time
Baseline (DeepLabv?2) [23] 56.8 62.0 66.8 -
Hung et al. [5] 59.1 64.3 67.4 0.63h
Mittal et al. [6] (s4GAN) 60.9 65.4 68.1 0.6%h
Ours 61.2 66.0 68.4 0.52h
PASCAL-Context
Labeled Data
Methods 1/8 1/3 Time
Baseline (DeepLabv?2) [23] 32.1 35.4 -
Hung et al. [5] 32.8 34.8 0.25h
Mittal et al. [6] (s4GAN) 324 37.1 0.27h
Ours 33.8 373 0.20h
4.2. Implementation Details
Motivated by previous work [5, 6], we use DeepLabv2 [23] as the

baseline network for PASCAL VOC and PASCAL-Context datasets.
The U-net [21] , which is widely used in medical image segmenta-
tion, is used as the baseline network for Leukocyte dataset.

Similar to [6], this work uses the poly-learning policy for the
segmentation network, where the base learning rate is multiplied by
afactor of (1— 7 )P°" in every iteration. In our setup, pow =
0.9. Following the learning scheme in [6], the segmentation network
is optimized using the SGD optimizer with a base learning rate of le-
2 for Leukocyte dataset and 2.5e-4 for others, momentum 0.9, weight
decay Se-4, batch size 8 and 40K iterations. Hyper-parameter A is set
to 0.1. Our implementation is based on the open source framework
Pytorch. All the experiments were run on two Nvidia Tesla P100
GPUs.

4.3. Results

Ablation Studies. The method consists of three loss terms. We
thus explored the effectiveness of each loss term and their combina-
tions. We measure the effect of common sharpening and adaptive
sharpening individually. After that, we experiment with class con-
sistency constraints and combine with adaptive sharpening. It can be
seen from the Table 1 that all of loss terms effectively improve the
performance. Finally, adding feature gradient map regularization to
explore the effectiveness of the complete method. As shown in Ta-
ble 1, each loss term can improve the performance of network. We
use the complete method as the method for all experiments.
PASCAL VOC and Context Datasets. Table 2 shows the
evaluation results on the PASCAL VOC and the PASCAL-Context
datasets without pretraining on the Microsoft COCO [1] dataset.
The proposed method can improve baseline 2.4% to 7.7% under



(a) Original (b) Ground truth  (c) Baseline [23]

(d) Hung et al. [5] (e) Mittal et al. [6] (f) Ours

Fig. 3: Qualitative results on the PASCAL VOC dataset using 1/8 labeled samples.

(a) Original (b) Ground truth  (c) Baseline [21]

(d) Chenetal. [8] (e) Yuetal. [9] (f) Ours

Fig. 4: Qualitative results on the Leukocyte dataset using 1/10 labeled samples.

different data splits by utilizing unlabeled samples. The methods
of [5] and [0] are the previous start-of-the-art method and the cur-
rent start-of-the-art method in semi-supervised semantic segmenta-
tion, respectively, in which the method of Hung et al. [5] is based on
GAN and Mittal et al. [6] introduced consistency training in [5]. Un-
der the same experimental settings, the proposed method obtains the
best results in the PASCAL VOC dataset with 1/3, 1/8, and 1/20 la-
beled data and the PASCAL-Context dataset with 1/3 and 1/8 labeled
data. The last column of Table 2 is the comparisons of the average
training time per epoch, the proposed method takes the shortest time
compared to other comparison semi-supervised semantic segmenta-
tion methods. Fig. 3 shows the qualitative results on the PASCAL
VOC dataset using 1/8 labeled samples.

Leukocyte Dataset. In order to further prove that the proposed
method has good universality. We test on 1/10 labeled data on
the Leukocyte dataset without data augmentation. Table 3 shows
the proposed method yields an improvement over the baseline of
2.23%, 1.67%, 2.46%, and 0.95% for the f1 score, recall, preci-
sion, and accuracy, respectively. Meanwhile, the results of compar-
ing with current state-of-the-art semi-supervised medical semantic
segmentation methods [8, 9] describe the proposed method reach
the new start-of-the-art with the least cost, in which [8] and [9] are
the semi-supervised medical segmentation methods based on consis-
tency training proposed by Chen et al. [8] and Yu et al. [9], respec-
tively. Fig. 4 shows the qualitative results on the Leukocyte dataset

Table 3: Semi-supervised comparisons on the Leukocyte dataset us-
ing 1/10 labeled samples.

F1  Recall Precision Acc Time

Baseline (Unet) [21] 90.56 91.98 9049 97.21 -
Chen et al. [8] 9221 93.11 92.19 97.88 0.021h
Yu et al. [9] 92.75 93.34 92,95 98.01 0.020h
Ours 92.79 93.65 9295 98.16 0.018h

Table 4: Space complexity comparisons on the PASCAL VOC
dataset.

Extra Parameters

Baseline (DeepLabv2) [23] _
2.78M

Hung et al. [5]
Mittal et al. [6] (s4GAN) 2.78M
Ours 1.16M

using 1/10 labeled samples, for images of white blood cells whose
cytoplasm is close to the background, the proposed method can ef-
fectively segment the cytoplasm.

Space Complexity. As shown in the space complexity compar-
isons on the PASCAL VOC dataset in Table 4, compared with the
baseline parameters, the proposed method only adds 1.16M extra pa-
rameters, while Huang et al. [5] method and Mittal et al. [6] method
add 2.78M extra parameters. The proposed method requires the least



amount of extra parameters in the comparison methods, in which the
extra parameters of the proposed method are less than about one-half
parameters of the comparison methods.

5. CONCLUSION

In this paper, we presented an entropy minimization method for
semi-supervised semantic segmentation, which was simple, effi-
cient, and easily expandable. The proposed method designs three
additional unsupervised loss function terms to optimize the net-
work collaboratively and make the decision boundary lie in a low-
density region. Extensive experiments on PASCAL VOC, PASCAL-
Context, and Leukocyte datasets show that the proposed method is
effective, without almost additional calculations and network struc-

tures.

In the future, we will explore the fusion of the proposed

method and the existing semi-supervised methods.
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